Λέοναρντ Όιλερ

euler

Ο Λέοναρντ Όιλερ (Leonard Euler, 15 Απριλίου 1707 – 18 Σεπτεμβρίου 1783) ήταν πρωτοπόρος Ελβετός μαθηματικός και φυσικός. Έκανε σημαντικές ανακαλύψεις σε τομείς όπως ο απειροελάχιστος λογισμός και η θεωρία γραφημάτων. Επίσης καθιέρωσε την μοντέρνα μαθηματική ορολογία και σημειογραφία, κυρίως στον τομέα της μαθηματικής ανάλυσης, όπως την έννοια της μαθηματικής συνάρτησης. Επίσης είναι φημισμένος για τη δουλειά του στη μηχανική, τη ρευστοδυναμική, την οπτική και την αστρονομία. Ο Όιλερ πέρασε μεγάλο μέρος της ενήλικης ζωής του στο St. Petersburg στη Ρωσία και στο Βερολίνο, Πρωσία. Θεωρείται ως ο κατ’ εξοχήν μαθηματικός του 18ου αιώνα, και ένας από τους σημαντικότερους μαθηματικούς που έχουν υπάρξει ποτέ. Είναι επιπλέον ένας από τους πιο παραγωγικούς μαθηματικούς όλων των εποχών, τα άπαντά του καταλαμβάνουν 60-80 οκτασέλιδους τόμους. Μία δήλωση που έγινε από τον Πιέρ Σιμόν Λαπλάς εκφράζει την επίδραση του Όιλερ στα μαθηματικά : «διαβάστε Όιλερ, διαβάστε Όιλερ, είναι ο κύριος όλων μας».

Βιογραφία
Ο Όιλερ γεννήθηκε στη Βασιλεία της Ελβετίας στις 15 Απριλίου 1707 και ήταν γιος του Πάουλ Όιλερ ενός πάστορα της αναμορφωμένης εκκλησίας και της Μαργκερίτε Μπρούκερ, (Marguerite Brucker), κόρης πάστορα. Είχε δύο μικρότερες αδερφές τις Άννα Μαρία και Μαρία Μαγδαληνή. Μετά τη γέννησή του, η οικογένειά του μετακόμισε από τη Βασιλεία στο Ρίχεν (Riehen), όπου πέρασε και το μεγαλύτερο μέρος της παιδικής του ηλικίας. Ο πατέρας του ήταν φίλος με την οικογένεια Μπερνούλι και ειδικότερα με τον Γιόχαν Μπερνούλι ο οποίος τότε θεωρούνταν ως ο καλύτερος μαθηματικός της Ευρώπης, θα αποτελέσει τελικά την πιο σημαντική επιρροή στον νεαρό Λέοναρντ. Η πρώτη επίσημη εκπαίδευση του Όιλερ ξεκινά στην Βασιλεία, όπου είχε σταλθεί για να μείνει μαζί με τη γιαγιά του. Σε ηλικία δεκατριών ετών εγγράφηκε στο πανεπιστήμιο της Βασιλείας και το 1723 έλαβε μάστερ στη φιλοσοφία με διατριβή στη σύγκριση των φιλοσοφιών των Ρενέ Ντεκάρτ και Νιούτον. Εκείνη την περίοδο έκανε μαθήματα με τον Γιόχαν Μπερνούλι, ο οποίος γρήγορα ανακάλυψε το απίστευτο ταλέντο του νέου του μαθητή στα μαθηματικά. Ο Όιλερ εκείνη την εποχή σπούδαζε Ελληνική και Εβραϊκή θεολογία, ύστερα από προτροπή του πατέρα του, με σκοπό να γίνει πάστορας, αλλά ο Μπερνούλι κατάφερε να πείσει τον Πάουλ Όιλερ ότι ο Λέοναρντ επρόκειτο να γίνει ένας σπουδαίος μαθηματικός. Το 1726 ο Όιλερ ολοκλήρωσε τη διατριβή του στη διάδοση του ήχου με τίτλο De Sono (Περί Ήχου). Τότε ήταν που επιχείρησε εντελώς αποτυχημένα να αποκτήσει μία θέση στο πανεπιστήμιο της Βασιλείας. Το 1727, πήρε μέρος για πρώτη φορά στο Paris academy στο διαγωνισμό Prize problem. Το ζητούμενο εκείνης της χρονιάς ήταν οι διαγωνιζόμενοι να βρουν τον καλύτερο τρόπο να τοποθετηθούν τα κατάρτια σε ένα πλοίο. Ο Πιέρ Μπουγκέ (Pierre Bouguer) έγινε γνωστός ως «ο πατέρας της ναυτικής αρχιτεκτονικής» και κέρδισε, ενώ ο Όιλερ πήρε τη δεύτερη θέση. Ο Όιλερ αργότερα κέρδισε αυτό το ετήσιο βραβείο 12 φορές.

Αγία Πετρούπολη
Σε αυτήν την περίοδο,οι δύο γιοι του Γιόχαν Μπερνούλι, Ντάνιελ και Νίκολας, εργάζονταν στην Αυτοκρατορική Ρωσική Ακαδημία Επιστημών στην Αγία Πετρούπολη. Στις 10 Ιουλίου του 1726 ο Νίκολας πέθανε από σκωληκοειδίτιδα αφού είχε παραμείνει για ένα χρόνο στη Ρωσία και, όταν ο Ντάνιελ ανέλαβε τη θέση του αδελφού του στα μαθηματικά / φυσική διαίρεση, συνέστησε ότι η θέση στη φυσιολογία που είχε εκκενωθεί από τον ίδιο θα έπρεπε να συμπληρωθεί από τον φίλο του Όιλερ. Τον Νοέμβριο του 1726 ο Όιλερ αποδέχτηκε διακαώς την προσφορά, αλλά καθυστέρησε να κάνει το ταξίδι στην Αγία Πετρούπολη καθώς είχε κάνει ανεπιτυχώς αίτηση για μια θέση καθηγητή φυσικής στο Πανεπιστήμιο της Βασιλείας.

Ο Όιλερ έφτασε στη ρωσική πρωτεύουσα στις 17 του Μάη του 1727. Προήχθη από την κατώτερη θέση του στο ιατρικό τμήμα της ακαδημίας σε μια θέση στο Τμήμα Μαθηματικών. Ο Όιλερ έμαθε τη ρωσική γλώσσα και προσαρμόστηκε στη ζωή στην Αγία Πετρούπολη. Ανέλαβε επίσης πρόσθετη εργασία ως γιατρός στο Ρωσικό Ναυτικό.

Η Ακαδημία στην Αγία Πετρούπολη, που είχε ιδρυθεί από τονeuler- Πέτρο το Μεγάλο, είχε ως στόχο να βελτιώσει την εκπαίδευση στη Ρωσία και να κλείσει το επιστημονικό χάσμα με τη Δυτική Ευρώπη. Ως εκ τούτου, είχε γίνει ιδιαίτερα ελκυστική για τους ξένους μελετητές όπως ο Όιλερ. Η ακαδημία διέθετε άφθονους οικονομικούς πόρους και μια περιεκτική βιβλιοθήκη που προερχόταν από τις ιδιωτικές βιβλιοθήκες του ίδιου του Πέτρου και της αριστοκρατίας. Πολύ λίγοι μαθητές φοιτούσαν στην ακαδημία, προκειμένου να περιοριστεί το βάρος της διδασκαλίας της σχολής, και η ακαδημία έδινε έμφαση στη έρευνα και προσέφερε στη σχολή της τόσο το χρόνο όσο και την ελευθερία να επιδιώξει επιστημονικές ερωτήσεις.

Η ευεργέτιδα της Ακαδημίας, Αικατερίνη Α΄, η οποία συνέχισε τις προοδευτικές πολιτικές του πρώην συζύγου της, πέθανε την ημέρα της άφιξης του Όιλερ. Κατόπιν, η ρωσική αριστοκρατία απέκτησε εξουσία μετά την ενθρόνιση του δωδεκάχρονου Πέτρου Β΄. Η αριστοκρατία ήταν καχύποπτη απέναντι στους ξένους επιστήμονες της ακαδημίας, και ως εκ τούτου έκοψε τη χρηματοδότηση και προκάλεσε άλλες δυσκολίες στον Όιλερ και τους συνεργάτες του.

Οι συνθήκες βελτιώθηκαν ελαφρώς μετά το θάνατο του Πέτρου Β΄, και ο Όιλερ γρήγορα αναδείχθηκε μέσω των τάξεων στην ακαδημία και έγινε καθηγητής της φυσικής το 1731. Δύο χρόνια αργότερα, ο Ντάνιελ Μπερνούλλι, ο οποίος είχε αγανακτήσει με τη λογοκρισία και την εχθρότητα που αντιμετώπιζε στην Αγία Πετρούπολη, έφυγε για τη Βασιλεία. Ο Όιλερ τον διαδέχθηκε ως επικεφαλής του τμήματος μαθηματικών.

Στις 7 Ιανουαρίου του 1734, παντρεύτηκε την Katharina Gsell (1707–1773), κόρη του Georg Gsell, ενός ζωγράφου από το Ακαδημαϊκό Γυμνάσιο. Το νεαρό ζευγάρι αγόρασε ένα σπίτι δίπλα στον ποταμό Νέβα. Από τα δέκα παιδιά τους, μόνο πέντε επέζησαν στην παιδική ηλικία.

Βερολίνο
Ανήσυχος για τη συνεχή αναταραχή στη Ρωσία, ο Όιλερ έφυγε απλο την Αγία Πετρούπολη στις 17 Ιουνίου του 1741 για να αναλάβει μία θέση στην Ακαδημία του Βερολίνου, η οποία του είχε προσφερθεί από τον Φρειδερίκο Β΄ της Πρωσίας. Έζησε για εικοσιπέντε χρόνια στο Βερολίνο, όπου έγραψε πάνω από 380 άρθρα. Στο Βερολίνο δημοσίευσε δύο δουλειές του, για της οποίες θα γινόταν πιο γνωστός: την εισαγωγή στην analysin infinitorum, ένα κείμενο για συναρτήσεις το οποίο δημοσιεύτηκε το 1748 και το Institutiones calculi differentialis ,που δημοσιεύτηκε το 1755 στο differential calculus. Το 1755 εκλέχθηκε ως εξωτερικό μέλος στη Σουηδική Βασιλική Ακαδημία των Επιστημών.

Επιπρόσθετα, ζητήθηκε από τον Όιλερ να διδάξει την πριγκίπισσα του Άνχαλτ-Ντεσσάου (Anhalt-Dessau), ανεψιά του Φρειδερίκου. Ο Όιλερ της έγραψε πάνω από 200 γράμματα στις αρχές του 1760, τα οποία αργότερα συγχωνεύθηκαν σε έναν best-selling τόμο με τίτλο Γράμματα του Όιλερ για διάφορα θέματα στην φυσική φιλοσοφία προς μία Γερμανίδα πριγκίπισσα. Αυτή η δουλειά περιείχε την έκθεση του Όιλερ σε ποικίλα θέματα που αφορούσαν τόσο τη φυσική και τα μαθηματικά, όσο πρόσφεραν πολύτιμες ιδέες για την προσωπικότητα και τα θρησκευτικά πιστεύω του Όιλερ. Αυτό το βιβλίο διαβάστηκε περισσότερο από κάθε μια από τις μαθηματικές του εργασίες και εκδόθηκε σε όλη την Ευρώπη και τις Η.Π.Α. Η δημοσιότητα των «γραμμάτων» αποδεικνύει την ικανότητα του Όιλερ να επικοινωνεί για επιστημονικά θέματα αποτελεσματικά σε ένα ευρύ κοινό, μία σπάνια ικανότητα για έναν αφοσιωμένο ερευνητή επιστήμονα.

Παρά την τεράστια συμβολή του Όιλερ στο κύρος της Ακαδημίας, ήταν τελικά αναγκασμένος να εγκαταλείψει το Βερολίνο. Αυτό ήταν εν μέρει λόγω της σύγκρουσης προσωπικοτήτων με τον Φρειδερίκο, ο οποίος θεωρούσε τον Όιλερ μη-εκλεπτυσμένο, ειδικά σε σύγκριση με τον κύκλο των φιλοσόφων που ο Γερμανός βασιλιάς έφερε στην Ακαδημία. Ο Βολταίρος ήταν μεταξύ αυτών των υπαλλήλων του Φρειδερίκου, και ο Γάλλος απολάμβανε μια εξέχουσα θέση μέσα στο κοινωνικό κύκλο του βασιλιά. Ο Όιλερ, ένας απλός θρησκευόμενος και σκληρά εργαζόμενος άνθρωπος, ήταν πολύ συμβατικός στις πεποιθήσεις και τα γούστα του. Ήταν με πολλούς τρόπους το αντίθετο του Βολταίρου. Ο Όιλερ είχε περιορισμένη εκπαίδευση σε ρητορική, και είχε την τάση να συζητά θέματα για τα οποία γνώριζε λίγα, καθιστώντας τον ένα συχνό στόχο του πνεύματος του Βολταίρου. Ο Φρειδερίκος εξέφρασε επίσης την απογοήτευσή του σχετικά με τις πρακτικές ικανότητες του Όιλερ στην μηχανική:

Ήθελα να έχω ένα πίδακα νερού στον κήπο μου: ο Όιλερ υπολόγισε την απαραίτητη δύναμη των τροχών έτσι ώστε να αυξηθεί το νερό σε μια δεξαμενή, από όπου θα πρέπει να υποχωρήσει πάλι πίσω στα κανάλια, και τελικά να αναβλύζει στο Sanssouci . Ο μύλος μου διεξήχθη γεωμετρικά και δεν μπορούσαν να συγκεντρώσουν μια γουλιά νερό σε απόσταση μικρότερη από πενήντα βήματα προς τη δεξαμενή. Ματαιότης ματαιοτήτων! Ματαιότης της γεωμετρίας!

Επιδείνωση της όρασης
H όραση του Όιλερ επιδεινώθηκε κατά τη διάρκεια της μαθηματικής του σταδιοδρομίας. Τρία χρόνια μετά υπέφερε από ένα σχεδόν θανατηφόρο πυρετό το 1735, σχεδόν τυφλώθηκε από το δεξί του μάτι, αλλά ο Όιλερ δεν κατηγόρησε το επίπονο έργο για τη χαρτογράφηση που πραγματοποιήθηκε για την Ακαδημία της Αγίας Πετρούπολης για την κατάστασή του. Η όραση του Όιλερ στο μάτι επιδεινώθηκε κατά τη διάρκεια της παραμονής του στη Γερμανία, στο βαθμό που ο Φρειδερίκος αναφέρονται σε αυτόν ως «Κύκλωπα». Ο Όιλερ αργότερα ανέπτυξε καταρράκτη στο αριστερό μάτι του, καθιστώντας τον σχεδόν εντελώς τυφλό λίγες εβδομάδες μετά την ανακάλυψή του το 1766. Ωστόσο, η κατάστασή του φάνηκε να έχει μικρή επίδραση στην παραγωγικότητα του, όμως ο ίδιος αποζημιώθηκε για αυτό με ψυχικές ικανότητες υπολογισμού και φωτογραφική μνήμη. Για παράδειγμα, ο Όιλερ μπορούσε να επαναλάβει την Αινειάδα του Βιργιλίου από την αρχή μέχρι το τέλος, χωρίς δισταγμό, και για κάθε σελίδα στην έκδοση μπορούσε να δείξει ποια γραμμή ήταν η πρώτη και ποια η τελευταία. Με τη βοήθεια των γραφέων του, η παραγωγικότητα του Όιλερ σε πολλούς τομείς της μελέτης του αυξήθηκε. Παρήγαγε κατά μέσο όρο, μια μαθηματική μελέτη κάθε εβδομάδα κατά το έτος 1775.

Συνεισφορές στα μαθηματικά και τη φυσική
Ο Όιλερ εργάστηκε σε όλους σχεδόν τους τομείς των μαθηματικών: γεωμετρία, απειροελάχιστο λογισμό, τριγωνομετρία, άλγεβρα και θεωρία αριθμών καθώς και στη συνεχή φυσική τη σεληνιακή θεωρία και σε άλλους τομείς της φυσικής. Είναι δημιουργική φυσιογνωμία στην ιστορία των μαθηματικών: Αν τυπώνονταν, τα έργα του, πολλά από τα οποία είναι θεμελιώδους συμφέροντος, θα καταλάμβαναν μεταξύ 60 και 80 τόμους μεγέθους «quarto», το όνομα του Όιλερ συνδέεται με μεγάλο αριθμό θεμάτων.

Ο Όιλερ είναι ο μόνος μαθηματικός για τον οποίο δύο αριθμοί έχουν ονομαστεί προς τιμήν του: ο πάρα πολύ σημαντικός αριθμός του Όιλερ στον λογισμό, e, περίπου ίσο με 2,71828, και η σταθερά Όιλερ-Μασκερόνι (Euler-Mascheroni Constant) γ (γάμμα), μερικές φορές αναφέρεται απλά ως «η σταθερά του Όιλερ», περίπου ίση σε 0,57721.

Μαθηματική σημειογραφία
Ο Όιλερ εισήγαγε και διέδωσε αρκετούς συμβατικούς συμβολισμούς μέσα από τα πολυάριθμα και ευρείας κυκλοφορίας εγχειρίδιά του. Πιο συγκεκριμένα, εισήγαγε την έννοια της συνάρτησης και ήταν ο πρώτος που έγραψε το f(x), το οποίο χαρακτηρίζει τη συνάρτηση f που εφαρμόζεται στην μεταβλητή x. Εισήγαγε επίσης τη σύγχρονη σημειογραφία για τις τριγωνομετρικές λειτουργίες, το γράμμα e για τη βάση του φυσικού λογαρίθμου (γνωστό σήμερα και ως αριθμός του Euler), το ελληνικό γράμμα Σ για τα αθροίσματα και το γράμμα i να υποδηλώσει την φανταστική μονάδα. Η χρήση του ελληνικού γράμματος π για να υποδηλώσει την αναλογία περιφέρειας ενός κύκλου προς τη διάμετρό του επίσης διαδόθηκε από τον Όιλερ, αν και δεν προέρχεται από αυτόν.

Ανάλυση
Η ανάπτυξη του απειροελάχιστου λογισμού ήταν στην πρώτη γραμμή της μαθηματικής έρευνας του 18ου αιώνα, και η οικογένεια Μπερνούλι -οικογενειακοί φίλοι της οικογένειας Όιλερ- ήταν υπεύθυνη σε μεγάλο βαθμό για την πρόωρη ανάπτυξη αυτού του τομέα. Χάρη στην επιρροή της, η μελέτη των μαθηματικών έγινε το επίκεντρο του έργου του Όιλερ. Ενώ μερικές από τις αποδείξεις του Όιλερ δεν είναι αποδεκτές από τα σύγχρονα πρότυπα της μαθηματικής ακρίβειας (ειδικότερα η στήριξή του στην αρχή της γενικότητας της άλγεβρας), οι ιδέες του οδήγησαν σε πολλές μεγάλες προόδους. Ο Euler είναι γνωστός στην ανάλυση για τη συχνή χρήση και την ανάπτυξη της δυναμοσειράς, την έκφραση των συναρτήσεων ως αθροίσματα άπειρων όρων, όπως
1

 

Ο Όιλερ απέδειξε άμεσα τη δυναμοσειρά για το e και τη συνάρτηση της αντίστροφης εφαπτομένης (Η τεχική για την έμμεση απόδειξη μέσω της δυναμοσειράς δόθηκε από τους Νεύτωνα και Λάιμπνιτς μεταξύ του 1670 και του 1680). Η τόλμη του να χρησιμοποιήσει αυτή τη δυναμοσειρά τον βοήθησε να λύσει το διάσημο πρόβλημα του Basel το 1735(το οποίο παρείχε ένα πιο περίτεχνο επιχείρημα το 1741):
2

Ο Όιλερ εισήγαγε τη χρήση της εκθετικής συνάρτησης και των λογαρίθμων σε αναλυτικές αποδείξεις. Ανακάλυψε τρόπους για να εκφράσει τις διάφορες λογαριθμικές συναρτήσεις με δυναμοσειρές, και αυτός όρισε με επιτυχία τους λογάριθμους των αρνητικών και των μιγαδικών αριθμών, διευρύνοντας έτσι σημαντικά το πεδίο των μαθηματικών εφαρμογών των λογαρίθμων.  Όρισε επίσης την εκθετική συνάρτηση για τους μιγαδικούς αριθμούς, και ανακάλυψε της σχέση της με τις τριγωνομετρικές συναρτήσεις. Για κάθε πραγματικό αριθμό φ (μετρημένο σε ακτίνια), ο τύπος του Όιλερ αναφέρει ότι η σύνθετη εκθετική συνάρτηση ικανοποιεί τη σχέση:
13fe339501dd773dce4e720e52f7dde7

Το 1988, οι αναγνώστες του Mathematical Intelligencer την ψήφισαν ως «τον πιο όμορφο μαθηματικό τύπο που υπήρξε ποτέ». Συνολικά, ο Όιλερ ήταν υπεύθυνος για τους τρεις από τους πέντε κορυφαίους τύπους σε αυτή τη δημοσκόπηση.

Ο τύπος του De Moivre είναι μια άμεση συνέπεια του τύπου του Όιλερ.

Επιπλέον, ο Όιλερ επεξεργάστηκε τη θεωρία των τριτοβάθμιων υπερβατικών συναρτήσεων με την εισαγωγή της συνάρτησης γάμμα και εισήγαγε μια νέα μέθοδο για την επίλυση Quartic εξισώσεων. Βρήκε επίσης έναν τρόπο για τον υπολογισμό ολοκληρωμάτων με πολύπλοκα όρια, προαναγγέλλοντας την ανάπτυξη της σύγχρονης σύνθετης ανάλυσης. Εφηύρε επίσης τον λογισμό των μεταβολών, συμπεριλαμβανομένου και του πασίγνωστου αποτέλεσματός της, την εξίσωση Euler-Lagrange.

Ο Όιλερ πρωτοστάτησε επίσης στη χρήση αναλυτικών μεθόδων για την επίλυση των προβλημάτων της θεωρίας αριθμών. Με αυτό τον τρόπο, ένωσε δύο διαφορετικούς κλάδους των μαθηματικών και εισήγαγε ένα νέο πεδίο μελέτης, την αναλυτική θεωρία αριθμών. Κατά το σπάσιμο του εδάφους για αυτό το νέο πεδίο, ο Euler δημιούργησε τη θεωρία της υπεργεωμετρικής σειράς , q-series , τις υπερβολικές τριγωνομετρικές συναρτήσεις και την αναλυτική θεωρία των συνεχών κλασμάτων. Για παράδειγμα, απέδειξε την απειρία των πρώτων αριθμών με την απόκλιση της αρμονικής σειράς, και χρησιμοποίησε αναλυτικές μεθόδους για να κατανοήσει τον τρόπο διάταξης των πρώτων αριθμών. Το έργο του Όιλερ στον τομέα αυτό οδήγησε στην ανάπτυξη του θεώρημα πρώτων αριθμών¡Θεωρήματος των πρώτων αριθμών.

Θεωρία των αριθμών
Το ενδιαφέρον του Όιλερ για την αριθμητική θεωρία μπορεί να αποδοθεί στην επίδραση του Κρίστιαν Γκόλντμπαχ, φίλου του από την Ακαδημία της Αγίας Πετρούπολης. Ένα μεγάλο μέρος του αρχικού έργου του Όιλερ στην αριθμητική θεωρία βασίστηκε στο έργο του Πιέρ ντε Φερμά. Ο Όιλερ ανέπτυξε κάποιες από τις ιδέες του Fermat και διέψευσε κάποιες από τις εικασίες του.

Ο Όιλερ συνέδεσε τη μορφή της κατάταξης των πρώτων αριθμών με ιδέες στην ανάλυση. Απέδειξε ότι το άθροισμα των αντίστροφων των πρώτων αριθμών αποκλίνει. Με αυτό τον τρόπο, ανακάλυψε τη σχέση μεταξύ της Ζήτα συνάρτησης και των πρώτων αριθμών, και αυτό είναι γνωστό ως τύπος του Όιλερ για τη Ζήτα συνάρτηση.

Ο Όιλερ απέδειξε τις ταυτότητες του Νεύτωνα , το μικρό θεώρημα του Φερμά , το θεώρημα του Φερμά για το άθροισμα των τετραγώνων δύο αριθμών, και συνέβαλε σημαντικά στο θεώρημα των τεσσάρων τετραγώνων του Λαγκράνζ. Επίσης εφηύρε τη συνάρτηση totient φ ( n ),όπου ο αριθμός των θετικών ακεραίων είναι μικρότερος ή ίσος με του αριθμού n των σχετικά πρώτων ακεραίων. Χρησιμοποιώντας τις ιδιότητες αυτής της λειτουργίας, ο ίδιος γενίκευσε το μικρό θεώρημα του Φερμά σε αυτό που είναι σήμερα γνωστό ως θεώρημα του Όιλερ. Συνέβαλε σημαντικά στη θεωρία των τέλειων αριθμών, η οποία είχε συναρπάσει τους μαθηματικούς από την εποχή του Ευκλείδη. Ο Όιλερ διατύπωσε επίσης τον νόμο της τετραγωνικής αμοιβαιότητας. Η έννοια αυτή θεωρείται ως το θεμελιώδες θεώρημα της θεωρίας των αριθμών, και οι ιδέες του, άνοιξαν το δρόμο για το έργο του Καρλ Φρίντριχ Γκάους.

Από το 1772 ο Όιλερ απέδειξε ότι 2 31 – 1 = 2,147,483,647 είναι Mersenne πρώτος αριθμός. Μπορεί να παρέμεινε ο πιο γνωστός πρώτος αριθμός έως το 1867.

Φυσική και Αστρονομία
Ο Όιλερ βοήθησε στην ανάπτυξη της εξίσωσης δοκού Euler-Bernoulli, η οποία έγινε ο ακρογωνιαίος λίθος της μηχανικής. Εκτός από την επιτυχή εφαρμογή των αναλυτικών εργαλείων του στα προβλήματα της κλασικής μηχανικής, ο Όιλερ εφάρμοσε αυτές τις τεχνικές και στα ουράνια προβλήματα. Το έργο του στην αστρονομία αναγνωρίστηκε με μια σειρά βραβείων από την Ακαδημία του Παρισιού κατά τη διάρκεια της καριέρας του. Επιτεύγματά του περιλαμβάνουν τον προσδιορισμό με μεγάλη ακρίβεια των τροχιών των κομητών και άλλων ουράνιων σωμάτων, την κατανόηση της φύσης των κομητών, καθώς και τον υπολογισμό της παράλλαξης του ήλιου. Οι υπολογισμοί του συνέβαλαν επίσης στην ανάπτυξη των ακριβών πινάκων γεωγραφικού μήκους.

Επιπλέον, ο Όιλερ συνέβαλε σημαντικά στην οπτική. Διαφώνησε με την σωματιδιακή θεωρία του Νεύτωνα του φωτός στα Opticks, η οποία ήταν τότε η επικρατούσα θεωρία. Το 1740 τα χαρτιά του σχετικά με την οπτική βοήθησαν να διασφαλιστεί ότι η θεωρία των κυμάτων του φωτός που προτείνει ο Κρίστιαν Χόιχενς θα γίνει ο κυρίαρχος τρόπος σκέψης, τουλάχιστον μέχρι την ανάπτυξη της κβαντικής θεωρίας του φωτός.

Το 1757 δημοσίευσε ένα σημαντικό σύνολο εξισώσεων για την ροή ιδανικού υγρού χωρίς τη χρήση ιξώδους, που είναι γνωστές σήμερα ως εξισώσεις Euler.

Προσωπική ιδεολογία και θρησκευτικές πεποιθήσεις
Ο Όιλερ και ο φίλος του Ντάνιελ Μπερνούλι ήταν αντίπαλοι του Λάιμπνιτς για τον μοναδισμό και τη φιλοσοφία του Κρίστιαν Βολφ. Ο Όιλερ επέμεινε ότι η γνώση είναι εν μέρει βάσιμη, βάσει ακριβών ποσοτικών νόμων, κάτι που ο μοναδισμός και η θεωρία του Βολφ δεν ήταν σε θέση να παράσχουν. Οι θρησκευτικές τάσεις του Όιλερ ίσως επίσης να ευθύνονταν για την απέχθεια του δόγματος, έφτασε σε τέτοιο σημείο ώστε να ονομάσει τις ιδέες του Βολφ ως «ειδωλολατρικές και αθεϊστικές».

Πολλά από όσα είναι γνωστά για τις θρησκευτικές πεποιθήσεις του Όιλερ μπορεί να συναχθούν από τις Επιστολές προς μια Γερμανίδα πριγκίπισσα και μια προηγούμενη εργασία, την Rettung der Göttlichen Offenbahrung Gegen die Einwürfe der Freygeister (Άμυνα της Θείας Αποκάλυψης κατά των κατηγοριών των Freethinkers). Τα έργα αυτά δείχνουν ότι ο Όιλερ ήταν ένας αφοσιωμένος Χριστιανός που πίστευε στην Αγία Γραφή για να εμπνευστεί, η Rettung ήταν κυρίως ένα επιχείρημα για την θεοπνευστία της Αγίας Γραφής.

Υπάρχει ένας διάσημος μύθος, εμπνευσμένος από τα επιχειρήματα του Euler σε κοσμικούς φιλοσόφους πάνω στη θρησκεία, που ειπώθηκαν κατά τη διάρκεια της δεύτερης θητείας του Euler στην ακαδημία της Αγίας Πετρούπολης. Ο Γάλλος φιλόσοφος Ντενί Ντιντερό είχε επισκεφθεί τη Ρωσία μετά από πρόσκληση της Μεγάλης Αικατερίνης. Ωστόσο, η αυτοκράτειρα είχε θορυβηθεί ότι τα επιχειρήματα του φιλοσόφου για την αθεΐα επηρέαζαν τα μέλη του δικαστηρίου της και έτσι ο Όιλερ κλήθηκε να αντιμετωπίσει τον Γάλλο. Ο Ντιντερό ενημερώθηκε ότι ένας ειδικευμένος μαθηματικός είχε προσκομίσει μια απόδειξη για την ύπαρξη του Θεού: συμφώνησε να δει την απόδειξη, όπως αυτή παρουσιάστηκε στο δικαστήριο. Ο Όιλερ εμφανίστηκε, προχώρησε προς τον Ντιντερό και με έναν τόνο τέλειας καταδίκης ανακοίνωσε αυτό το ανακόλουθο: «Κύριε, ως εκ τούτου, υπάρχει Θεός-απαντήστε!» Ο Ντιντερό, για τον οποίο (όπως λέει η ιστορία) όλα τα μαθηματικά ήταν ασυναρτησίες, στάθηκε αποσβολωμένος καθώς ξέσπασαν δυνατά γέλια στην αίθουσα. Αμήχανος, ζήτησε να φύγει από τη Ρωσία, ένα αίτημα που χορηγήθηκε με ευχαρίστηση από την αυτοκράτειρα. Όσο ψυχαγωγικό μπορεί να είναι αυτό το ανέκδοτο, σε αυτό κρύβεται, ότι στη συνέχεια ο ίδιος ο Ντιντερό έκανε έρευνα στα μαθηματικά. Ο μύθος προφανώς ειπώθηκε για πρώτη φορά από τον Augustus De Morgan.

Επέτειοι
Ο Όιλερ απεικονίστηκε στο ελβετικό χαρτονόμισμα των 10 φράγκων και σε πολυάριθμα γραμματόσημα της Ελβετίας, της Γερμανίας και της Ρωσίας. Ο αστεροειδής 2002 Euler ονομάστηκε προς τιμήν του. Επίσης μνημονεύεται από την Λουθηρανική Εκκλησία στο Ημερολόγιο των Αγίων της στις 24 Μαΐου-ήταν ένας αφοσιωμένος Χριστιανός (και πιστός στην αδιαμφισβήτητη αλήθεια της Βίβλου) που έγραψε απολογητική και πολέμησε σθεναρά εναντίον των επιφανών αθεϊστών της εποχής του.

Στις 15 Απριλίου 2013, τα 306α γενέθλια του Όιλερ γιορτάστηκαν με ένα Google Doodle.

print