Οι πρώτοι αριθμοί είναι αρκετά απλοί. Ακόμη κι ένα μικρό παιδί μπορεί να κατανοήσει τη φύση τους, αρκεί να γνωρίζει διαίρεση. Γιατί τότε υπάρχουν προβλήματα γύρω από τους πρώτους, που ταλαιπωρούν τις μεγαλύτερες διάνοιες στο χώρο των μαθηματικών για περισσότερο από έναν αιώνα τώρα; Τι δουλειά έχουν οι πρώτοι αριθμοί με τον κβαντικό μικρόκοσμο; Πώς εμπλέκονται οι μιγαδικοί αριθμοί στην όλη ιστορία; Θα αλλάξει η ζωή μας αν κι όποτε αποδειχθεί, επιτέλους, η εικασία του Riemann, το ιερό δισκοπότηρο των μαθηματικών;
Οι πρώτοι αριθμοί είναι κάτοικοι του συνόλου των λεγόμενων φυσικών αριθμών, τους οποίους χρησιμοποιούμε, μεταξύ άλλων, για να μετράμε. Ανάλογα με το κείμενο που διαβάζετε, άλλοτε θα βλέπετε πως οι φυσικοί αριθμοί ξεκινάνε από το 0 κι άλλοτε από το 1. Η συμπερίληψη του μηδενός στους φυσικούς βολεύει τους μαθηματικούς που ασχολούνται με τη Θεωρία Συνόλων, ενώ η απουσία του εκείνους που δουλεύουν στη Θεωρία Αριθμών. Αλλά ας μην παρασυρόμαστε με λεπτομέρειες και τεχνικά ζητήματα — τουλάχιστον όχι από τόσο νωρίς. Ποιοι είναι, λοιπόν, οι πρώτοι αριθμοί; Πολύ απλά, είναι όλοι εκείνοι οι φυσικοί αριθμοί που είναι μεγαλύτεροι από το μηδέν και διαιρούνται μόνο με το 1 και τον εαυτό τους. Εδώ ίσως πρέπει να ξεκαθαρίσουμε ότι όταν λέμε πως ένας φυσικός aa διαιρείται από έναν φυσικό bb, εννοούμε πώς το υπόλοιπο της διαίρεσης a/ba/b είναι μηδέν. Είναι προφανές πως οποιοσδήποτε αριθμός που δεν είναι μηδέν διαιρείται με τη μονάδα και τον ίδιο του τον εαυτό — έχει, δηλαδή, τουλάχιστον δύο διαιρέτες. Κάποιοι φυσικοί αριθμοί έχουν ακριβώς δύο διαιρέτες, π.χ., οι 2, 3 και 7, ενώ κάποιοι άλλοι έχουν περισσότερους από δύο, π.χ., οι 9, 12 και 18. Ένας εναλλακτικός ορισμός των πρώτων, λοιπόν, είναι να πούμε πως πρόκειται για τους φυσικούς που είναι μεγαλύτεροι από το μηδέν κι έχουν ακριβώς δύο διαιρέτες. Η λίστα των πρώτων αριθμών ξεκινά έτσι:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, …
Θα παρατηρήσατε πως απουσιάζει το 1, ένας αριθμός που από τον προηγούμενο ορισμό είναι ξεκάθαρα πρώτος. Οι μαθηματικοί όμως δεν θέλουν το 1 στη λίστα με τους πρώτους αριθμούς, αφενός επειδή αποτελεί «τετριμμένη περίπτωση», όπως συνηθίζουν να λένε, αφετέρου διότι δημιουργεί προβλήματα στην περαιτέρω ανάπτυξη σχετικών θεωριών. Παρατηρήστε, επίσης, ότι το 2 είναι ο μοναδικός πρώτος που ταυτόχρονα είναι ζυγός. Είναι προφανές πως δεν υπάρχει ζυγός πρώτος μεγαλύτερος του 2. Πράγματι, κάθε ζυγός μεγαλύτερος από το δύο έχει τουλάχιστον τρεις διαιρέτες – τη μονάδα, το 2 και τον εαυτό του -, επομένως δεν είναι πρώτος.
Θα μπορούσαμε να πούμε πως οι πρώτοι είναι για τους αριθμούς ό,τι είναι τα άτομα για την ύλη: έχουν το ρόλο δομικών λίθων! Πράγματι, το Θεμελιώδες Θεώρημα της Αριθμητικής μας βεβαιώνει πως κάθε φυσικός μεγαλύτερος της μονάδας είτε είναι πρώτος είτε εκφράζεται ως γινόμενο πρώτων παραγόντων. Επιπρόσθετα, η ανάλυση ενός οποιουδήποτε αριθμού σε γινόμενο πρώτων παραγόντων είναι μοναδική, εκτός ίσως από τη σειρά που γράφονται οι παράγοντες αυτοί. Έτσι, ο αριθμός 30 μπορεί να γραφτεί μοναδικά ως 2⋅3⋅5 (όλοι πρώτοι), ο 6936 ως 2^3⋅3⋅17^2 (γινόμενο δυνάμεων πρώτων), ο 24475932 ως 2^2⋅3^5⋅13^2⋅149 κ.ο.κ.
Μια πρώτη έκπληξη
Μια πρακτική εφαρμογή που βρίσκουν οι πρώτοι αριθμοί είναι στην κρυπτογραφία, που ως τεχνική χρησιμοποιείται π.χ. στη διασφάλιση του απορρήτου των τηλεπικοινωνιών ή σε εμπορικές εφαρμογές. Για παράδειγμα, όποτε κάνουμε μια αγορά από το ίντερνετ με την πιστωτική μας κάρτα, η συναλλαγή με το ηλεκτρονικό κατάστημα κρυπτογραφείται. Απουσία των πρώτων αριθμών –και με δεδομένη την ισχύ των σύγχρονων υπολογιστών–, η όποια μέθοδος κρυπτογράφησης είναι πολύ πιθανό πως θα έσπαζε εύκολα κι επομένως τα στοιχεία της πιστωτικής μας θα γίνονταν γνωστά σε τρίτους. Τώρα, σε μια ισχυρή μέθοδο κρυπτογράφησης είναι απαραίτητο να υπεισέρχονται πολύ μεγάλοι πρώτοι αριθμοί (μεγαλύτεροι από 10^100), επομένως χρειάζονται μέθοδοι ή αλγόριθμοι ευρέσεως πρώτων. Χρειάζονται, επίσης, αλγόριθμοι που θα αποφασίζουν εάν ένας αριθμός είναι πρώτος ή όχι. Μπορείτε π.χ. να βρείτε αν ο αριθμός 2047 είναι πρώτος; Με μια πρώτη ματιά μάλλον όχι, εκτός κι αν έχετε κάποιο ιδιαίτερο χάρισμα στη διαίρεση. Όπως και να ‘χει, με λίγο ή πολύ κόπο θα διαπιστώσετε ότι το 2047 διαιρείται με το 89 αλλά και με το 23, επομένως δεν είναι πρώτος. Καλώς. Τι μπορείτε όμως να πείτε για τον αριθμό 2147483647; Για τον 2305843009213693951; (Είναι και οι δύο πρώτοι, μάλιστα ανήκουν στους λεγόμενους πρώτους του Mersenne.)
Ένα φυσικό ερώτημα που αργά ή γρήγορα προκύπτει αφορά στο πλήθος των πρώτων αριθμών. Είναι άραγε πεπερασμένο ή άπειρο; Μπορεί να υπάρχουν αλγόριθμοι –μάλιστα από την αρχαιότητα– που εντοπίζουν πρώτους, όμως το γεγονός αυτό δεν μας λέει τίποτε για το πλήθος τους. Στις σύγχρονες εφαρμογές χρησιμοποιούνται τεράστιοι πρώτοι, όμως ούτε αυτό το γεγονός διασφαλίζει ότι μετά τον μεγαλύτερο γνωστό πρώτο περιμένει άλλος ένας. Πέρα από τις όποιες πρακτικές εφαρμογές, οι μαθηματικοί θέλουν να γνωρίζουν — και σ’ αυτή την περίπτωση τουλάχιστον γνωρίζουν! Πριν όμως τους ρωτήσουμε για το πλήθος των πρώτων, έχει πολύ ενδιαφέρον να κάνουμε μόνοι μας ένα πείραμα. Με τη βοήθεια ενός προγράμματος όπως είναι το Mathematica, μπορούμε να διεξάγουμε μια προσωπική, προκαταρκτική έρευνα για την κατανομή των πρώτων. Ο ακόλουθος πίνακας είναι το αποτέλεσμα μιας τέτοιας απόπειρας.
φυσικός m πρώτοι αριθμοί ποσοστό πρώτων μικρότεροι από το m μεταξύ 0 και m ------------------------------------------------------------------------- 1000 168 16,8 1000000 78498 7,8498 1000000000 50847534 5,0847534 1000000000000 37607912018 3,7607912 1000000000000000 29844570422669 2,98445704 1000000000000000000 24739954287740800 2,47399543 |
Παρατηρούμε ότι όσο το m μεγαλώνει, το ποσοστό των πρώτων που είναι μικρότεροι από το m μικραίνει. Οι πρώτοι αριθμοί είναι μάλλον «αραιοί» μέσα στους φυσικούς. Μάλιστα, εξετάζοντας ολοένα κι ευρύτερα διαστήματα αριθμών βλέπουμε ότι οι πρώτοι αραιώνουν ολοένα και περισσότερο! Είναι εύλογο να σκεφτούμε πως, κάποια στιγμή, για αρκετά μεγάλο m, το ποσοστό των πρώτων θα πέσει στο μηδέν και δεν θα ανακάμψει ποτέ ξανά: Οι πρώτοι θα έχουν τελειώσει!
Η προηγούμενη έρευνα είναι σίγουρα ενδιαφέρουσα –τουλάχιστον για όσους έχουν μέσα τους έστω κι ένα ελάχιστο ίχνος του μαθηματικού μικροβίου–, σίγουρα όμως δεν αποτελεί απόδειξη για το πλήθος των πρώτων. Για να δώσει ένας μαθηματικός τελεσίδικη απάντηση σε ένα οποιοδήποτε ερώτημα, οσοδήποτε απλό ή σύνθετο, δεν δικαιούται να αρκεστεί σε ενδείξεις. Χρειάζεται μια αυστηρή απόδειξη, που θα ξεκαθαρίζει τα πράγματα πέρα από κάθε αμφιβολία. Αναφορικά με το πλήθος των πρώτων, λοιπόν, ήδη από την αρχαιότητα ο Ευκλείδης απέδειξε ότι είναι άπειρο. Ο προηγούμενος πίνακας έχει συμπληρωθεί σωστά, είναι όμως παραπλανητικός!
Εκφράζοντας την απόδειξη του Ευκλείδη στη σύγχρονη μαθηματική γλώσσα, ας ονομάσουμε p τον μεγαλύτερο πρώτο κι ας σχηματίσουμε τον αριθμό
q=2×3×5×7×⋯×p+1
Με άλλα λόγια, ο q προκύπτει αν πολλαπλασιάσουμε τους πρώτους αριθμούς μεταξύ 2 και p συμπεριλαμβανομένων, και στο γινόμενο προσθέσουμε μία μονάδα. Ο q δεν διαιρείται με κανέναν αριθμό μεταξύ 2 και p, αφού πάντα μένει υπόλοιπο η μονάδα. Επομένως, είτε ο qqείναι πρώτος αριθμός, προφανώς μεγαλύτερος από τον p, είτε διαιρείται με κάποιον αριθμό μεγαλύτερο από τον p. Αν υποθέσουμε ότι ισχύει το τελευταίο κι ονομάσουμε rr τον μικρότερο αριθμό που είναι μεγαλύτερος από τον p και ταυτόχρονα διαιρεί τον q, διαπιστώνουμε πως και ο r, αναγκαστικά, είναι πρώτος! Πράγματι, εάν ο r δεν ήταν πρώτος, τότε οποιοσδήποτε από τους πρώτους παράγοντές του θα ήταν μικρότερος από τον p και θα διαιρούσε τον q, γεγονός που αντιβαίνει στην υπόθεσή μας (ότι, δηλαδή, ο q διαιρείται με κάποιον αριθμό μεγαλύτερο από τον p).
Συνοψίζοντας, βλέπουμε ότι για έναν οποιονδήποτε αριθμό, ασχέτως αν είναι πρώτος ή όχι, υπάρχει πάντοτε ένας μεγαλύτερος πρώτος. Επομένως, το πλήθος των πρώτων αριθμών είναι άπειρο.
Εκπληκτικές ιδιότητες, ατίθασα προβλήματα
Οι πρώτοι αριθμοί παρουσιάζονται ως «ταπεινά» μαθηματικά όντα: Το ειδοποιό χαρακτηριστικό που τους ξεχωρίζει από τους υπόλοιπους φυσικούς αριθμούς είναι ιδιαίτερα απλό. Την ίδια στιγμή, όμως, έχουν αρκετές θαυμαστές ιδιότητες. Ακολουθούν ορισμένες από αυτές.
Συνδεδεμένες με τους πρώτους αριθμούς είναι ορισμένες απλές στη διατύπωση μαθηματικές εικασίες, η αλήθεια ή το ψεύδος των οποίων δεν έχει ξεκαθαρίσει έως σήμερα. Θαυμάστε την απλότητα ορισμένων εξ’ αυτών.
Κυνηγώντας πρώτους
Το ζήτημα του πλήθους των πρώτων έκλεισε πολύ νωρίς, γύρω στο 300 π.Χ. Οι μαθηματικοί όμως δεν μένουν εύκολα ευχαριστημένοι. Θέλουν, επιπρόσθετα, μεθόδους εύρεσης –ή εντοπισμού, αν προτιμάτε–, πρώτων αριθμών. Την αρχαιότερη μέθοδο εντοπισμού πρώτων τη χρωστάμε στον Ερατοσθένη (276 π.Χ. – 194 π.Χ.). Πρόκειται για το λεγόμενο Κόσκινο του Ερατοσθένη, έναν εκπληκτικά απλό αλγόριθμο που μπορεί και βρίσκει όλους τους πρώτους που είναι μικρότεροι ή ίσοι προς έναν δοσμένο φυσικό αριθμό. Δυστυχώς, το κόσκινο αποδεικνύεται ακατάλληλο για τις σημερινές εφαρμογές κι ανάγκες. Μια σύγχρονη, αποδοτική εκδοχή του αποτελεί το κόσκινο του Atkin, που ανέπτυξαν πρόσφατα οι Atkin και Bernstein. Ο σχετικός αλγόριθμος επιτρέπει την ταχύτατη εύρεση όλων των πρώτων που είναι μικρότεροι από έναν δοσμένο αριθμό. Μια υλοποίηση του αλγορίθμου και τον πηγαίο κώδικα σε γλώσσα C θα βρείτε στο δικτυακό τόπο http://cr.yp.to/primegen.html.
Σε άλλες εφαρμογές είναι συχνά επιθυμητό να γνωρίζουμε αν ένας συγκεκριμένος φυσικός είναι πρώτος ή όχι. Επειδή οι αριθμοί που συζητάμε ενδέχεται να έχουν χιλιάδες ή εκατομμύρια ψηφία, ακόμη και ένας αποδοτικός αλγόριθμος σε υπολογιστή είναι πιθανό να απαιτεί απαγορευτικά μεγάλο χρόνο, πριν δώσει τελεσίδικη απάντηση. Για το σκοπό αυτό έχουν αναπτυχθεί πιθανοκρατικοί αλγόριθμοι, οι οποίοι αφού εξετάσουν έναν αριθμό τον ανακηρύσσουν πιθανώς πρώτο ή οπωσδήποτε σύνθετο (σύνθετος, είναι άλλη μια ονομασία για τους αριθμούς που δεν είναι πρώτοι).
Το καλοκαίρι του 2002, τρεις Ινδοί ερευνητές, οι Manindra Agrawal, Neeraj Kayal και Nitin Saxena, επινόησαν έναν αλγόριθμο ελέγχου πρώτων (AKS primality test), ο οποίος διακρίνεται από τρεις εξαιρετικά επιθυμητές ιδιότητες. Καταρχάς, ο αλγόριθμος AKS είναι πολυωνυμικός. Αυτό σημαίνει ότι ο χρόνος που απαιτεί πριν δώσει απάντηση αυξάνει σχετικά «ομαλά» και πάντα ανάλογα με το πλήθος των ψηφίων του υπό εξέταση αριθμού. Άλλοι αλγόριθμοι του είδους είναι εκθετικοί, που σημαίνει ότι αν τους δώσουμε έναν αριθμό προς εξέταση και μετά έναν άλλον, με ένα μόλις παραπάνω ψηφίο, ο χρόνος που θα δαπανήσουν για την εξέταση του δευτέρου θα είναι δυσανάλογα μεγαλύτερος, σε σχέση με το χρόνο που δαπάνησαν για την εξέταση του πρώτου. Η άλλη χρήσιμη ιδιότητα του αλγορίθμου AKS αφορά στον ντετερμινιστικό του χαρακτήρα: Οι απαντήσεις που δίνει είναι τελεσίδικες, χωρίς να εμπλέκουν πιθανότητες. Όσα και να είναι τα ψηφία του υπό εξέταση αριθμού, ο αλγόριθμος τελικά θα βρει, με απόλυτη βεβαιότητα, αν είναι πρώτος ή όχι. Η τρίτη ιδιότητα του AKS, αυτή που τον ξεχωρίζει από τον «σωρό», αφορά στην ανεξαρτησία του από αναπόδεικτες μαθηματικές εικασίες. Αντίθετα, πολλοί άλλοι αλγόριθμοι που εξετάζουν αν ένας αριθμός είναι πρώτος ή όχι είναι έτσι σχεδιασμένοι, ώστε να προϋποθέτουν την αλήθεια της υπόθεσης του Riemann. Τι είναι όμως αυτή η υπόθεση; Σύντομα θα δούμε, προς το παρόν όμως αρκεί να πούμε ότι πρόκειται για ένα απίστευτα δύσκολο μαθηματικό πρόβλημα, η λύση του οποίου διαφεύγει από τους μαθηματικούς εδώ και 150 χρόνια. Η υπόθεση του Riemann συνδέεται με την κατανομή των πρώτων αριθμών, ξεφεύγει όμως από το σύμπαν των μαθηματικών και δείχνει να αγγίζει τον κβαντικό μικρόκοσμο, που αποτελεί τη βάση του κόσμου γύρω μας.
Πόσοι είναι;
Εκτός από τον έλεγχο ή τον εντοπισμό πρώτων, οι μαθηματικοί μερικές φορές επιθυμούν να γνωρίζουν απλά πόσοι είναι οι πρώτοι που βρίσκονται «κάτω» από ένα συγκεκριμένο φυσικό αριθμό. Πόσοι πρώτοι είναι μικρότεροι από το 1000; Πόσοι μικρότεροι από το 1000000; Πόσοι από το 10^100; Όπως κάθε σώφρων άνθρωπος, έτσι και οι μαθηματικοί δεν θέλουν να δίνουν απάντηση σε τέτοια ερωτήματα, εντοπίζοντας τους πρώτους έναν προς έναν και μετρώντας τους. Αυτό που πραγματικά θέλουν είναι έναν τύπο, που θα του δίνουν έναν οποιονδήποτε αριθμό x κι εκείνος θα επιστρέφει το πλήθος των πρώτων που είναι μικρότεροι ή ίσοι του xx. Εάν υπήρχε ένας τέτοιος μαγικός τύπος, τότε σίγουρα θα γλίτωνε από φοβερή δουλειά πολλούς ερευνητές. Όπως ίσως μαντέψατε, πράγματι υπάρχει αυτή η μαθηματική «συνταγή» και μάλιστα περιγράφεται από το Θεώρημα των Πρώτων Αριθμών(καθόλου πρωτότυπο όνομα, όμως δεν αφήνει το παραμικρό περιθώριο για παρερμηνείες). Εάν συμβολίσουμε με π(x) το πλήθος των πρώτων που είναι μικρότεροι από το x, τότε αποδεικνύεται ότι
π(x)≈x/lnx
Ο Adrien-Marie Legendre ήταν ο πρώτος που υποψιάστηκε ότι ισχύει ο παραπάνω τύπος, το 1798. Περισσότερο από έναν αιώνα αργότερα, το 1896, οι Jacques Hadamard και de la Vallée Poussin απέδειξαν την ισχύ του, εργαζόμενοι ανεξάρτητα. Πριν δούμε με συγκεκριμένα παραδείγματα ότι ο τύπος πράγματι δουλεύει, οφείλουμε να κάνουμε μερικές παρατηρήσεις. Καταρχάς, το σύμβολο π εδώ δεν έχει καμία σχέση με τον γνωστό άρρητο αριθμό, που είναι ο λόγος της περιφέρειας ενός κύκλου προς τη διάμετρό του. Το δε σύμβολο ≈ σημαίνει «περίπου ίσο». Με απλά λόγια, δεν υπονοεί αυστηρή αλλά χαλαρή –ή προσεγγιστική, αν θέλετε– ισότητα. Τέλος, το lnx είναι ο νεπέριος λογάριθμος του x. Πρόκειται για μια εξαιρετικά δημοφιλή συνάρτηση των μαθηματικών.
Το Θεώρημα των Πρώτων Αριθμών, λοιπόν, μας δίνει έναν προσεγγιστικό τύπο για το μέτρημα των πρώτων που είναι μικρότεροι από έναν δοσμένο αριθμό xx. Σημειώστε ότι έως σήμερα δεν έχει βρεθεί ένας ακριβής τύπος για τον ίδιο σκοπό. Μολαταύτα, ο υπάρχων προσεγγιστικός τύπος δουλεύει με εκπληκτική (ποτέ όμως με απόλυτη) ακρίβεια, ιδιαίτερα για μεγάλες τιμές του xx. Για παράδειγμα, αν x=1000 τότε π(1000)≈1000/ln1000≈144,765. Από τον πίνακα που παραθέσαμε προηγουμένως ή με τη βοήθεια ενός προγράμματος σαν το Mathematica, βλέπουμε ότι η ακριβής τιμή του π(x) είναι 168. Το λάθος που υπεισέρχεται από τον προσεγγιστικό τύπο είναι γύρω στο 13,8%. Για x=1000000, η ακριβής τιμή του π(x) είναι 78498 και η προσεγγιστική 72382,4, γεγονός που μεταφράζεται σε ένα σφάλμα περίπου 7,8%. Για ακόμα μεγαλύτερη τιμή του x, ας πούμε 1000000000, το σφάλμα περιορίζεται στο 5,1%. Έχετε υπόψη, πάντως, ότι το σφάλμα είναι πάντοτε μεγαλύτερο από το 0, οσοδήποτε μεγάλη τιμή του x και αν πάρουμε: Ο τύπος για το π(x) είναι προσεγγιστικός κι αυτό ποτέ δεν αλλάζει!
Ένας αριθμός ονομάζεται παλινδρομικός όταν παραμένει ίδιος ανεξάρτητα από τη φορά γραφής (αριστερά προς δεξιά ή δεξιά προς αριστερά). Παραδείγματα παλινδρομικών αριθμών αποτελούν οι 11, 121, 5005 κ.ά. Παρατηρήστε ότι η ιδιότητα της «παλινδρομικότητας» εξαρτάται από το σύστημα αρίθμησης! Για παράδειγμα, στο δεκαδικό σύστημα ο αριθμός 11 είναι παλινδρομικός αλλά στο δυαδικό γράφεται ως 1011, οπότε σ’ αυτό δεν είναι. Για ένα δοσμένο σύστημα αρίθμησης, ένας αριθμός ονομάζεται παλινδρομικός πρώτος όταν είναι παλινδρομικός και ταυτόχρονα πρώτος (προφανώς, το εάν είναι πρώτος ή όχι δεν έχει να κάνει με το σύστημα αρίθμησης). Οι δεκαπέντε πρώτοι δεκαδικοί παλινδρομικοί πρώτοι, είναι οι 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727. Ο μεγαλύτερος γνωστός παλινδρομικός πρώτος είναι ο 10^130022+3761673⋅10^65008+1 (μικροσκοπικός, συγκρινόμενος με τον μεγαλύτερο γνωστό πρώτο, τον 48ο πρώτο του Mersenne). Είναι άγνωστο αν υπάρχουν άπειροι δεκαδικοί παλινδρομικοί πρώτοι.
Δείτε εδώ και τον μεγαλύτερο πρώτο αριθμό (2^74207281-1) Τ-Υ-Π-Ω-Μ-Ε-Ν-Ο σε χαρτί!
Δελτίο Τύπου:Αποτελέσματα «Παιχνίδι και Μαθηματικά» 05/04/2024
Ελληνική Μαθηματική Εταιρεία
Παράρτημα Ν. Ημαθίας
Διεύθυνση: Ολγάνου 19
Πόλη: Βέροια
ΤΚ: 59132
Τηλέφωνο: 23310-67107
Fax: 23310-67107
email: mathima0@gmail.com
Copyright © 2016 Ελληνική Μαθηματική Εταιρεία - Παράρτημα Ν. Ημαθίας
0 comments